Abstract
Polarization imaging can reveal orthogonal information with respect to color about the structural composition of biological tissue, and with the advance of superior polarimeters its use for biomedical applications has proliferated in the last decade. Polarimetry can be used in pre-clinical and clinical settings for the early detection of cancerous tissue. Polarization-based endoscopy with the complementary near-infrared fluorescence imaging modality improves the early diagnosis of flat cancerous lesions in colorectal tumor models. With the development of new polarization sensors the need to use standard laboratory optics to create custom imaging systems increases. These additional optics can behave as polarization filters effectively degrading and modifying the original tissue's polarization signatures leading to erroneous judgments. Here, we present a framework to characterize the spectral and polarization properties of rigid endoscopes for polarization-based endoscopic imaging. We describe and evaluate two calibration schemes based on Mueller calculus to reconstruct the original polarization information. Optical limitations of the endoscopes and minimum polarimeter requirements are discussed that may be of interest to other researchers working with custom polarization-based imaging systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.