Abstract

The boron-ion-implanted polymethylmethacrylate (B:PMMA) samples formed with an energy of 40 keV, ion doses ranging from 6.25 × 1014 to 2.5 × 1016 B+/cm2, and current density of 1016 B+/cm2) in the course of ion-induced carbonization are observed. The value of optical band gap energy of boron-ion-implanted layer Egopt,B was estimated given thickness of implanted layer as a maximum penetration depth of B+ ions into PMMA by slow positron beam spectroscopy in agreement with SRIM simulation results. On the basis of Egopt,B values, a number of carbon atoms in carbonaceous clusters N for the B:PMMA was calculated. It is found the existence of three regions of ion doses (1) 6.25 × 1014 ÷ 3.13 × 1015 B+/cm2, (2) 3.75 × 1015 ÷ 6.25 × 1015 B+/cm2, and (3) 1.25 × 1016 ÷ 2.5 × 1016 B+/cm2, showing thresholds in the estimated Egopt,B and N values as a function of ion dose for the B:PMMA studied. The ion-induced structural evolution towards formation of carbon nanostructures within these thresholds is suggested as explanation of experimental results, taking into account the possible carbonization in high-dose B:PMMA nanocomposite films.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.