Abstract

Crystalline silicon (c-Si) wafers have found extensive use in photovoltaic applications. In this regard, to enable advanced light manipulation in thin-wafer c-Si solar cells, we demonstrate the fabrication of double-side-textured Si wafers composed of a front-surface photonic nanotexture fabricated with quantum dot arrays and a rear-surface microtexture. The addition of the rear-surface microtexture to a Si wafer with the front-surface photonic nanotexture increases the wafer’s optical absorption in the near-infrared region, thus enabling enhanced light trapping. Excitation spectroscopy reveals that the photoluminescence intensity in the Si wafer with the double-sided texture is higher than that in the Si wafer without the rear-surface microtexture, thus indicating an increase in true optical absorption in the Si wafer with the double-sided texture. Our results indicate that the double-sided textures, i.e., the front-surface photonic nanotexture and rear-surface microtexture, can effectively reduce the surface reflection loss and provide enhanced light trapping, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.