Abstract

Chemical vapor deposition-based growth techniques allow flexible design of complementary metal-oxide semiconductor (CMOS) compatible materials. Here, we report the deuterated silicon-rich nitride films grown using plasma-enhanced chemical vapor deposition. The linear and nonlinear properties of the films are characterized, and we experimentally confirm that the silicon-rich nitride films grown with SiD4 eliminates Si–H and N–H related absorption. The performance of identical waveguides for films grown with SiH4 and SiD4 are compared demonstrating a 2 dB/cm improvement in line with that observed in literature. Waveguides fabricated on the SRN:D film are further shown to possess a nonlinear parameter of 95 W−1 m−1, with the film exhibiting a linear and nonlinear refractive index of 2.46 and 9.8 times 10–18 m2W−1 respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.