Abstract
Optical characterization of graphite anodes in lithium ion batteries (LIB) is presented here for potential use in estimating their state of charge (SOC). The characterization is based on reflectance spectroscopy of the anode of commercial LIB cells and in situ optical measurements using an embedded optical fiber sensor. The optical characterization of the anode using wavelengths ranging from 500 to 900 nm supports the dominance of graphite over the solid electrolyte interface in governing the anode's reflectance properties. It is demonstrated that lithiated graphite's reflectance has a significant change in the near-infrared band, 750-900 nm, compared with the visible spectrum as a function of SOC. An embedded optical sensor is used to measure the transmittance of graphite anode in the near-infrared band, and the results suggest that a unique inexpensive method may be developed to estimate the SOC of a LIB.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.