Abstract

A GaAs/GaAlAs-based asymmetric microcavity structure was studied by various optical characterization techniques. The angle-dependent reflectance (R) spectra showed that the cavity mode (CM) superimposed on quantum well excitonic transitions. The resonance enhancement effect between the excitonic transitions and the CM in the weak-coupling regime was explored using the angle-dependent differential surface photovoltage spectroscopy (DSPS) and photoluminescence (PL), and temperature-dependent PL. In this work, we have also implemented a new modulation technique, namely, the angle modulation reflectance (AMR) to decouple the CM from the overlapped excitonic transitions. The AMR technique has been demonstrated to be an efficient method for the study of weak coupling effect in the microcavity structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.