Abstract

Poly(tetrafluoroethylene) (PTFE) thin films were deposited onto a glass slide substrate by a heat-resistance type vacuum evaporation apparatus due to changing the evaporation conditions. Transparency of the PTFE thin films prepared by the vacuum evaporation depended on the deposition conditions, i.e., temperatures of the basket, and distance between the evaporation source and substrate. To elucidate relationship between the molecular structure and transparency of the PTFE thin film prepared by the vacuum evaporation, chemical structures, crystallinity and thermophysical property were investigated. The chemical bonding state of the PTFE thin film prepared by the vacuum evaporation was almost the same as that of the pristine PTFE, however, the crystalinity was different. Although the pristine PTFE was crystal structure, the transparent evaporated thin film was estimated to be microcrystal structure. In addition, endothermic peaks in a differential scanning calorimeter (DSC) spectrum of the PTFE thin film were different from that of the pristine PTFE. These endothermic peaks of the PTFE thin film prepared by the vacuum evaporation shifted lower temperature compared to the pristine PTFE, which suggests that molecular weight of the PTFE thin film prepared by the vacuum evaporation decreased compared with that of the pristine PTFE.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.