Abstract

We present a two-dimensional theory of thermal emission and light scattering from an anisotropic wind-roughened water surface that is described by the Gaussian-Joint North Sea Wave Project model. The theory is developed through the use of the first-order geometrical-optics approxmation modified with shadowing effects, and it is valid when the average slopes of the surface are smaller than unity. The theory allows us to evaluate the effective emissivity and the effective bistatic reflectivity of a full-gravity-capillary wave surface at large viewing angles, for any direction relative to the average propagation direction of the surface wave. We also present an application of the theory to the recently proposed method for obtaining thermal imagery of a wind-roughened water surface from low altitudes, which is called statistically corrected ocean thermography. Corrected thermal images of the ocean surface, obtained by our field experiment, are shown.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.