Abstract

A general approach is described for optically implementing massively parallel logic. Cellular array logic and the cellular automaton theory are emphasized as a guiding principle in the design of optical parallel computers. These theoretical approaches are important clues to elucidate the general characteristics and the limitation of optical parallel logic. We propose the use of Minnick's cellular logic array, which is well known as a simple two-dimensional array of processor elements to synthesis arbitrary logic functions. With reference to the optical cellular logic architecture, a space-variant logic is proposed, that is, different logical operations are performed in parallel. This space-variant logic gate technique is related to the multiple instruction-stream multiple data-stream (MIMD) logic operation technique. The new method is the MIMD extension of Tanida and Ichioka's optical shadow-casting logic, which is based on a space-invariant or a SIMD (single instruction-stream multiple data-stream) logic gate array. Simple examples are demonstrated. An application of this method to the Minnick cellular architecture is discussed. Finally we will discuss the possibility of the Minnick cellular array to reconfigurable architectures and self-organizing architectures, which are implemented by changing the interconnection networks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.