Abstract

The current work is devoted to investigating the multidimensional solitons known as optical bullets in optical fiber media. The governing model is a (3+1)-dimensional nonlinear Schrödinger system (3D-NLSS). The study is based on deriving the traveling wave reduction from the 3D-NLSS that constructs an elliptic-like equation. The exact solutions of the latter equation are extracted with the aid of two analytic approaches, the projective Riccati equations and the Bernoulli differential equation. Upon applying both methods, a plethora of assorted solutions for the 3D-NLSS are created, which describe mixed optical solitons having the profiles of bright, dark, and singular solitons. Additionally, the employed techniques provide several kinds of periodic wave solutions. The physical structures of some of the derived solutions are depicted to interpret the nature of the medium characterized by the 3D-NLSS. In addition, the modulation instability of the discussed model is examined by making use of the linear stability analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.