Abstract

Atomic media are important in optics research since they can be conveniently manipulated and controlled due to easy selection of atomic levels, laser fields, and the active adjustment of many system parameters. In this paper, we investigate optical Bloch oscillation, Zener tunneling, and Bloch–Zener oscillation in atomic media both theoretically and numerically. We use two coupling fields to prepare the dynamical optical lattice through interference. To induce a transverse force, we make the frequency difference between the two coupling fields increase linearly along the longitudinal coordinate. These phenomena have potential application for beam splitters and optical interconnects, and are helpful for investigating quantum analogies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.