Abstract

We examine in detail the quasi-phase-matching process obtained as a stationary modulation of the fundamental field at the band edge of a finite one-dimensional photonic crystal. The treatment is carried out in terms of the structure Bloch waves and fully explains the behavior of second-harmonic generation in the grating. An integrated microstructured AlGaAs mesa waveguide is proposed that gives efficient second-harmonic and difference-frequency generation in virtue of the combined presence of a periodic modulation of the fundamental-field amplitude and of the photonic bandgap edge.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.