Abstract
A developed two-dimensional Finite Difference Time Domain (FDTD) method has been performed to investigate the optical bistability in a subwavelength metallic grating coated by nonlinear material. Different bistability loops have been shown to depend on parameters of the structure. The influences of two key parameters, thickness of nonlinear material and slit width of metallic grating, have been studied in detail. The effect of optical bistability in the structure is explained by Surface Plasmons (SPs) mode and resonant waveguide theory.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.