Abstract

The external cavity feedback semiconductor laser shows obvious optical bistability in practice. That is, at the same operating temperature, different temperature tuning directions will lead to different laser mode outputs. This will lead to optical mode hopping and unstable output wavelength of the laser. In this work, we measured this phenomenon and explained it through a theoretical model with thermal synchronization considered. Our measured results show obvious bistability and temperature tuning direction dependence. In order to explain this phenomenon, we considered the physical characteristics of each optoelectronic component in the external cavity, and found that the temperature changes of each component were not synchronized over time. After establishing a model that takes into account the thermal asynchrony phenomenon, we have effectively explained this phenomenon.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.