Abstract

Native fluorescence spectra are acquired from fresh normal and cancerous human prostate tissues. The fluorescence data are analyzed using an unsupervised machine learning algorithm such as non-negative matrix factorization. The nonnegative spectral components are retrieved and attributed to the native fluorophores such as collagen, reduced nicotinamide adenine dinucleotide (NADH), and flavin adenine dinucleotide (FAD) in tissue. The retrieved scores of the components are used to estimate the relative concentrations of the native fluorophores such as NADH and FAD and the redox ratio. A supervised machine learning algorithm such as support vector machine (SVM) is used to classify normal and cancerous tissue samples based on either the relative concentrations of NADH and FAD or the redox ratio alone. Various statistical measures such as sensitivity, specificity, and accuracy, along with the area under receiver operating characteristic (ROC) curve are used to show the classification performance. A cross validation method such as leave-one-out is used to further evaluate the predictive performance of the SVM classifier to avoid bias due to overfitting, and the accuracy was found to be 93.3%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.