Abstract

Optical binding interactions between laser-trapped spherical microparticles are familiar in a wide range of trapping configurations. Recently it has been demonstrated that these experiments can be accurately modeled using Mie scattering or coupled dipole models. This can help confirm the physical phenomena underlying the inter-particle interactions, but does not necessarily develop a conceptual understanding of the effects that can lead to future predictions. Here we interpret results from a Mie scattering model to obtain a physical description which predict the behavior and trends for chains of trapped particles in Gaussian beam traps. In particular, it describes the non-uniform particle spacing and how it changes with the number of particles. We go further than simply demonstrating agreement, by showing that the mechanisms "hidden" within a mathematically and computationally demanding Mie scattering description can be explained in easily-understood terms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call