Abstract

When set to travel along a curved path, e.g., in a bending-waveguide setting, an optical beam tends to re-adjust its position, shifting away from the center of path curvature. This shift is highly sensitive to the spatial profile of the refractive index, providing a vectorial pointer for curved-path geodesics and bending-induced optical tunneling. An evolution-operator analysis of this effect extends an analogy with a time-evolution-operator treatment of quantum dynamics and suggests the routes whereby the ability of an optical beam to sense curved-path geodesics can be understood in terms of the pertinent evolution operators, path integrals, and imaginary-time/path theorems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call