Abstract
The Brewster effect, which is known as a notable physical law, has promising prospects in perfect absorption and angular selectivity transmission. The Brewster effect in isotropic materials has been investigated extensively in previous works. However, the research on anisotropic materials has been rarely carried out. In this work, we theoretically investigate the Brewster effect in quartz crystals with tilted optical axes. The conditions for the occurrence of the Brewster effect in anisotropic materials are derived. The numerical results show that by changing the orientation of the optical axis, we have effectively regulated the Brewster angle of crystal quartz. The reflection of crystal quartz versus the wavenumber and incidence angle at different tilted angles is studied. In addition, we discuss the effect of the hyperbolic region on the Brewster effect of crystal quartz. The Brewster angle negatively correlates with the tilted angle when the wavenumber is 460c m -1 (Type-II). In contrast, when the wavenumber is 540c m -1 (Type-I), the Brewster angle positively correlates with the tilted angle. Finally, the relationship between the Brewster angle and wavenumber at different tilted angles is investigated. The findings in this work will broaden the research field of crystal quartz and open the door for tunable Brewster devices based on anisotropic materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.