Abstract

Although optical tweezers function well for the majority of transparent particles, the absorbing particles experience a considerably high absorption force that can destroy the stable optical traps. Photophoretic force is an alternative mechanism that can be used to trap the absorbing particles. The major difficulty that is associated with the utilization of photophoretic forces for trapping strongly absorbing particles in liquids is the presence of considerable absorption on the illuminated side; a positive photophoretic force is usually induced, thereby pushing away the absorbing particles from the high-intensity region of the laser source. Here, we demonstrate a novel principle for the optical trapping and manipulation of strongly absorbing particles by harnessing strong Δα-type photophoretic forces while suppressing their stochastic nature in pure liquid glycerol using a normal divergent Gaussian beam and a Bessel-like beam. Further, our approach expands the optical manipulation of strong absorbing particles to liquid media and provides position control over the trapped particles, including the optical transportation and pinpoint positioning of the 3-μm objects over a distance of a millimeter.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call