Abstract
An optical associative processor that employs variable nonlinearity in the filter plane of the conventional-filter-based optical associative memory is described. It is shown that for severe compression types of nonlinearity, the performance of the associative processor in the areas of retrieval quality, convergence rate, and light efficiency is improved significantly. The nonlinearity in the filter plane is implemented using a nonlinearly transformed filter to store the associative images such that nonlinear correlations between the input image and the stored images are obtained. Two methods are described to construct the nonlinearly transformed filter. One method applies uniform nonlinear transformations to the filter function containing all associative signals. The second method applies controlled nonlinear operations on the filter function. Analysis and computer simulations are presented to illustrate the importance of applying nonlinear transformations in the filter plane of the optical associative processor.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.