Abstract

The luminescent properties and energy transfer (ET) mechanism in the Ln3+ pair of the RE3+ (RE = Eu3+ , Ce3+ , Dy3+ and Sm3+ ) doped K4 Ca(PO4 )2 phosphor were successfully investigated using a conventional high-temperature solid-state reaction. In the near infrared (NIR) range, Ce3+ -doped K4 Ca(PO4 )2 phosphor exhibited a UV-Vis. emission band, whereas K4 Ca(PO4 )2 :Dy3+ exhibited characteristic emission bands centred at 481 and 576 nm in the near-ultraviolet excitation range. The possibility of ET from Ce3+ to Dy3+ in K4 Ca(PO4 )2 phosphor was confirmed by a significant increase in the photoluminescence intensity of the Dy3+ ion based on the spectral overlap of acceptor and donor ions. X-ray diffraction, Fourier-transform infrared and thermogravimetric analysis/differential thermal analysis TGA/DTA were carried out to study phase purity, presence of functional groups and amount of weight loss under different temperature regimes. Therefore, the RE3+ -doped K4 Ca(PO4 )2 phosphor may be a stable phosphor host for light-emitting diode applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.