Abstract

Four shades of a commercial visible-light curing dental resin are analyzed using photothermal techniques. The thermal effusivities of the dental resin shades before curing are measured using a variant of the conventional photoacoustic technique. The thermal diffusivities before and after curing are measured using infrared photothermal radiometry in the forward emission configuration. The time evolution process of the photocuring resin is monitored by photothermal radiometry in the forward and backward emission configurations. Inversion of the time evolution signal of the different configurations used permits one to obtain the time evolution of the thermal and optical properties during the photocuring. The thermal effusivity and thermal diffusivity exhibit exponential growth, while the optical absorption decreases exponentially due to the curing process. The relationship of these phenomena with the decrease of monomer concentration induced by the curing is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call