Abstract

Zinc Oxide (ZnO) nanocrystal has been intensively studied not only for its fundamental scientific interest, but also for its potential in many optoelectronic applications, such as electroluminescence devices, chemical sensors, electrochromic windows and solar cells. Recently, ZnO nanocrystal has been used as electron acceptor materials for high power conversion efficiency hybrid solar cells due to good combination of its wide bandgap (3.37 eV), large exciton binding energy (60 meV), high charge carrier mobility, mechanical and thermal stability. The synthesis of monodisperse ZnO is an important key for achieving high performance of hybrid solar cells, because the properties of its nanocrystals strongly depend on its size and shape. We have successfully synthesized ZnO nanorod with 5 nm diameter and 11-13 nm in length by using sol-gel method as confirmed by TEM measurement. The ZnO nanorod has optical bandgap 3.38 eV and wurzite crystal structure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call