Abstract

We studied the effect of plasma treatment on the structural and optical properties of ZnO nanostructures prepared by chemical bath deposition in an aqueous solution of Zn(NO3)2 and hexamethylenetetramine. The room-temperature photoluminescence (PL) spectrum of the as-grown ZnO nanostructures exhibited two emission bands due to exciton emission and defect emission. After treating with hydrogen plasma, the treated ZnO nanostructures exhibited stronger exciton emission than the as-grown, untreated ZnO nanostructures in their respective cathodoluminescence and PL spectra. The low-temperature PL spectrum of the hydrogen plasma-treated ZnO nanostructures showed a strong exciton emission at 3.34 eV, attributing to the bound exciton and its longitudinal optical-phonon sidebands. The strong exciton emission is thought to be due to the combined effect of exciton emission enhancement by defect passivation and optical confinement resulting from nanostructure geometry.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call