Abstract

The optical and structural properties of aluminium-doped zinc oxide (AZO) films were investigated by photoluminescence (PL) spectroscopy, X-ray diffraction (XRD), and scanning electron microscopy. Pure zinc oxide (ZnO) and AZO composite films were deposited using vacuum evaporation method. The films exhibited different morphologies and crystallinity depending on the Al-doping. The SEM micrographs showed that a granular and compact structure could be seen for the ZnO film, while a nanoleaf structure with relatively porous nature was observed for the AZO composite film. The XRD patterns indicated that the crystalline growth orientation would be significantly affected by addition of Al. Compared with pure ZnO, the XRD peak intensity of the AZO composite was stronger and the line-width was narrower. Two-probe resistivity measurements showed that the AZO composites could be used as transparent conducting materials. The PL spectra revealed that the PL intensities of the AZO composites were stronger than that of the pure ZnO. The PL enhancement might be ascribed to the surface plasmon resonance of metal nanoclusters within the composite. Another possible reason of the PL enhancement would be the metal-induced crystallization caused by doping Al to ZnO matrix.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.