Abstract

AbstractSingle crystalline colorless α-Al2O3 samples were implanted with several fluences of Fe+ ions in the range of 1×1016 to 5×1017 Fe+ cm-2 at room temperature. Optical absorption and luminescence measurements were carried out before and after annealing in reducing and oxidizing atmospheres. The structural changes were studied with RBS/channeling and x-ray diffraction. After implantation, the damage induces a brownish coloration in the samples for fluences below 2×1017 Fe+ cm-2. The optical spectra are characterized by an absorption band centered at 200 nm. This band is strongly reduced after annealing at 1100 °C in reducing atmosphere and a new well-defined band develops around 350 nm. This new band shifts to lower values with the implanted fluence, which is an indication of its correlation with the dimensions of the iron precipitates formed in the implanted region. The existence of these precipitates was confirmed by x-ray diffraction and TEM. The samples implanted with fluences above 1×1016 Fe+ cm-2 annealed in oxidizing atmosphere display different optical absorption spectra, with respect to those annealed in reducing atmosphere, characterized by an increase in the intensity of the peak at 200 nm. Luminescence measurements show the presence of F and F+ centers in the samples. The existence of these defects can be explained by the need of charge compensation and strain release due to the formation of mixed iron oxide or metallic precipitates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.