Abstract

The creation of a plasma atmosphere in laser-target interactions increases the distance between the regions of laser absorption and hydrodynamic instability (ablation front), thus allowing thermal smoothing and a reduction of laser-imprinted modulations that reach the unstable ablation region. The total laser imprinting is reduced with pulse shapes that produce a plasma atmosphere more rapidly and by the implementation of temporal beam smoothing. These effects are measured and found to be consistent with models for the hydrodynamics and optical smoothing by spectral dispersion (SSD). Imprinting is reduced as the laser bandwidth is increased from 0.2 to 1.0 THz.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call