Abstract
GaS is an n-type semiconductor with indirect bandgap at 293 K equal to 2.5 eV. The average energy of phonons active in the formation of the edge of indirect absorption band is equal to 44.5 meV. The energy of transverse optical phonon of 23.9 meV was determined from the absorption spectra in the vibrations region of monophononic and crystal lattice. The phonons with average energy equal to 17 meV participate in the formation of the edge of indirect bandgap of GaSe crystals in absorption spectra. Direct bandgap width at 293 K is equal to 2.020 eV and 1.320 eV in GaSe and InSe, respectively. GaTe is a p-type semiconductor with direct bandgap width at 293 K equal to 1.6 eV. The edge of direct absorption in GaSe, GaTe and InSe lamellar crystals is formed by excitons with binding energy of 22 meV, 17 meV and 16 meV, respectively. Heterojonctions consisting of Cd and Zn chalcogenides and lamellar AIIIBVI semiconductors that are photosensitive in UV-VIS and NIR regions of spectrum were obtained by heat treatment of GaS, GaSe, GaTe and InSe single crystals in Cd and Zn vapor.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.