Abstract

AbstractAn intensive field campaign was conducted on Deokjeok Island off the west coast of the Korean Peninsula during spring 2009 to characterize the optical and hygroscopic properties of Asian continental outflows. A slightly high wavelength dependence of light absorption coefficient, α of 1.6 ± 0.05 (average ± 1· standard deviation), and a low humidity‐dependent light scattering enhancement factor at 80% relative humidity, f(80%) (2.0 ± 0.2), were obtained when air masses originated from the northern part of China (N China), compared to those obtained when air masses originated from the eastern part of China (E China) (α = 1.4 ± 0.1; f(80%) = 2.4 ± 0.2). The relatively high α and low f(80%) during the N China compared to those during the E China were consistent with a relatively high mass ratio of organic aerosol to sum of SO42−, NO3−, and NH4+ during the N China (1.01 ± 0.17) compared to the E China episode (0.25 ± 0.13). This result indicates the importance of organic aerosol on aerosol optical and hygroscopic properties of haze plumes. Single scattering albedo (SSA) of dry particulate matter with a diameter less than or equal to 2.5 µm (PM2.5) (0.92 ± 0.01) and mass scattering efficiency (MSE) of dry PM2.5 at 550 nm wavelength during the E China episode (3.6 ± 0.3 m2 g−1) were higher than those previously obtained at the air mass source regions in China (SSA = ~0.8; MSE = ~3.0 m2 g−1), implying that optical properties of PM2.5 were significantly altered during long‐range atmospheric transport.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.