Abstract

Phthalocyanines represent a crucial class of organic compounds with high technological appeal. By doping the center of these systems with metals, one obtains the so-called metal-phthalocyanines, whose property of being an effective electron donor allows for potentially interesting uses in organic electronics. In this sense, investigating optical and electronic structure changes in the phthalocyanine profiles in the presence of different metals is of fundamental importance for evaluating the appropriateness of the resulting system as far as these uses are concerned. In the present work, we carry out this kind of effort for phthalocyanines doped with different metals, namely, copper, nickel, and magnesium. Density functional theory was applied to obtain the absorption spectra, and electronic and structural properties of the complexes. Our results suggest that depending on the dopant, a different level of change is achieved. Moreover, electrostatic potential energy mapping shows how the charge distribution can be affected by solar radiation. Our contribution is crucial in describing the best possible candidates for use in different organic photovoltaic applications. Graphical Abstract Representation of meta-phthalocyanine systems. All calculations of this work are based on varying metal position along z axis, considering the z-axis has its zero point matching with the center of phthalocyanine cavityconsidering.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.