Abstract
We present a comprehensive study of spectral photoluminescence (PL), photoconductivity and Hall mobility in undoped, n and p-type modulation-doped quantum wells of Ga1-x In x N y As1-y /GaAs with varying nitrogen concentration. We show that the increasing nitrogen composition red shifts the energy gap and this red shift is accompanied with a reduction of the 2D electron mobility in the quantum wells. True temperature dependence of the band gap, free from errors associated with nitrogen induced exciton trapping effects, is observed because in the modulation doped QW samples PL emission is dominated by band-to-band recombination and the S-shape temperature dependence is eliminated. Excellent fit to semi-experimental Varshni equation is obtained and the temperature dependence of the band gap in the linear regime (dE/dT) is tabulated as a function of nitrogen concentration and the type of dopant.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.