Abstract

We present observations and a dynamical analysis of the comet-like main-belt object, (596) Scheila. V-band photometry obtained on UT 2010 December 12 indicates that Scheila's dust cloud has a scattering cross-section ~1.4 times larger than that of the nucleus, corresponding to a dust mass of M_d~3x10^7 kg. V-R color measurements indicate that both the nucleus and dust are redder than the Sun, with no significant color differences between the dust cloud's northern and southern plumes. We also undertake an ultimately unsuccessful search for CN emission, where we find CN and H2O production rates of Q(CN) < 9x10^23 s^-1 and Q(H2O) < 10^27 s^{-1}. Numerical simulations indicate that Scheila is dynamically stable for >100 Myr, suggesting that it is likely native to its current location. We also find that it does not belong to a dynamical asteroid family of any significance. We consider sublimation-driven scenarios that could produce the appearance of multiple plumes of dust emission, but reject them as being physically implausible. Instead, we concur with previous studies that the unusual morphology of Scheila's dust cloud is most simply explained by a single oblique impact, meaning this object is likely not a main-belt comet, but is instead the second disrupted asteroid after P/2010 A2 (LINEAR) to be discovered.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.