Abstract

Organic-inorganic lead halide perovskites (APbI3) have shown tremendous growth in solar cell efficiencies; however, our atomistic understanding of the intrinsic instability due to A-cation size effects is far from satisfactory. Here, we report a dispersion corrected density functional theory study of the influence of the A-cation size on the lattice structures of perovskite (α-cubic and γ-orthorhombic) and non-perovskite phases (δ-hexagonal and δ-orthorhombic) through isotropic (cesium and ammonium) and anisotropic cations (methylammonium, formamidinium and dabconium). We found that the local coordination environmental changes and noncovalent interactions are crucial in explaining the enthalpy of formation and relative energy stability. The subtler A-cation's influence on electronic polarization of perovskite and non-perovskite structures were estimated through the optical dielectric constant and then compared with experimental values.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.