Abstract

The growth of InP by low-pressure metalorganic chemical vapor deposition on vicinal Si(111), misoriented 3° toward [1-10], is reported. Antiphase domain-free InP is obtained without any preannealing of the Si substrate. Crystallographic, optical, and electrical properties of the layers are significantly improved as compared to the best reported InP grown on Si(001). The high structural perfection is demonstrated by a full width at half maximum (FWHM) of 121 arcs for the (111) Bragg reflex of InP (thickness = 3.4 μm) as obtained by double crystal x-ray diffraction. The low-temperature photoluminescence (PL) efficiency is 70% of that of homoepitaxially grown InP layers. The FWHM of the near-gap PL peak is only 2.7 meV as compared to 4.5 meV of the best material grown on Si(001). For the first time, InP:Fe layers with semi-insulating characteristics (ρ > 3 × 107 Ω-cm) have been grown by compensating the low residual background doping using ferrocene. Semi-insulating layers are prerequisite for any device application at ultrahigh frequencies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.