Abstract

Mixed-valent rhenium oxide thin films were deposited using reactive magnetron sputtering employing a metallic rhenium target within an oxygen–argon environment. The oxygen and argon flow rates were systematically varied, while the extinction coefficient, k, of the deposited layers was monitored using in situ spectroscopic ellipsometry. In situ monitoring was used to identify absorption features specific to ReO3, namely, the minimization of k brought on by the gap between interband absorption features in the UV at 310nm and the onset of free electron absorption at wavelengths above 540nm. Based on these results, oxygen flow ratios of 50% and 60% were shown to produce films having optical properties characteristic of ReO3, and thus, were selected for detailed ex situ characterization. Chemical analysis via X-ray photoelectron spectroscopy confirmed that all films consisted largely of ReO3, but had some contributions from Re2O3, ReO2 and Re2O7. Additional monitoring of the chemistry, as a function of environmental exposure time, indicated a correlation between structural instability and the presence of Re2O3 and Re2O7 in the films.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call