Abstract

A series of N-butyl-1,8-naphthalimide derivatives have been designed to explore their optical, electronic, and charge transport properties as charge transport and/or luminescent materials for organic light-emitting diodes (OLEDs). The frontier molecular orbitals (FMOs) analysis has turned out that the vertical electronic transitions of absorption and emission are characterized as intramolecular charge transfer (ICT). The calculated results show that the optical and electronic properties of N-butyl-1,8-naphthalimide derivatives are affected by the substituent groups in 4-position of 1,8-naphthalimide ring. Our results suggest that N-butyl-1,8-naphthalimide derivatives with biphenyl (1), 2-phenylthiophene (2), 2-(thiophen-2-yl)thiophene (3), 2,3-dihydrothieno[3,4-b][1,4]dioxine (4), 2-phenyl-1,3,4-oxadiazole (5), benzo[c][1,2,5]thiadiazole (6), benzo[c]thiophene (7), and benzo[d]thieno[3,2-b]thiophene (8) fragments are expected to be promising candidates for luminescent materials for OLEDs, particularly for 1–3 and 5. In addition, 7 and 8 can be used as promising hole transport materials for OLEDs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.