Abstract
This article reports a new process for creating polymer-based nanocomposites with enhanced dispersion of ceramic nanoparticles without using any surfactants, and the resulted changes in their optical and biological properties. Specifically, dispersion of two different ceramic nanoparticles, that is, hydroxyapatite (nHA) and magnesium oxide (nMgO) nanoparticles, in a model biodegradable polymer, namely poly(lactic-co-glycolic acid) (PLGA), was studied. High-power sonication was integrated with dual asymmetric centrifugal (DAC) mixing to improve dispersion of nanoparticles during solvent casting. The polymer/solvent ratio was optimized to improve nanoparticle dispersion in the multistep processing, including enhancing the efficacy of sonication and DAC mixing and reducing nanoparticle sedimentation during solvent-casting. Microstructural characterization confirmed that this new process improved nanoparticle dispersion in nMgO/PLGA and nHA/PLGA nanocomposites. Improved nanoparticle dispersion increased the optical transparency visually and optical transmission quantitatively for both nHA/PLGA and nMgO/PLGA nanocomposites. Improved dispersion of nanoparticles improved the adhesion of bone marrow derived mesenchymal stem cells (BMSCs) on nHA/PLGA but decreased BMSC viability on nMgO/PLGA. This difference is likely because the chemistry of nHA and nMgO had different effects on BMSCs. This study provided a new process for enhancing dispersion of ceramic nanoparticles in a polymer matrix and revealed the effects of dispersion on optical properties and cell responses, which are valuable for engineering optimal ceramic/polymer nanocomposites for different biomedical applications. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 2692-2707, 2018.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.