Abstract

Two room temperature ionic liquids (RTILs) having the same cation (1-butyl-3-methylimidazolium [BMIM]+) and different anions (tetrafluoroborate [BF4]−or trifluoromethanesulfonate [TfO]−) have been investigated by ATR-FTIR, NMR, TGA/DTA, UV–vis spectroscopy, agar-disk diffusion, minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) assay. Structural investigations by ATR-FTIR and NMR spectroscopy demonstrated that the [BMIM]+ cation exhibits hydrogen bonding with the [BF4]−and [TfO]− anions via the C (2)-H and C (4, 5)-H of the imidazolium cation ring in addition to the protons of the alkyl and methyl groups. UV–vis spectroscopy revealed an energy gaps of 3.79 ± 0.13 and 3.37 ± 0.04 eV for [BMIM][BF4] and [BMIM][TfO], respectively. Single term Sellmeier oscillator model and the Drude-Lorentz model were employed for the first time to investigate the optical and dielectric properties of ionic liquids. Applying the former model, enables us to extract the average inter-band oscillator wavelength (λ0), the average oscillator strength (S0), single oscillator energy (E0), dispersion energy (Ed) while the latter gives the plasmon frequency (ωp), reduced resonance frequency (ω0) and the electron lifetime at femtosecond level. Antibacterial assay by MIC and MBC demonstrated that both ionic liquids have antibacterial activity against gram-positive and gram-negative bacterial strains.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.