Abstract

The optical properties of impurity doped ZnO thin films were analyzed by taking into account the nonparabolicity in the conduction-band and the optically determined carrier concentration and mobility were correlated with those measured by Hall measurement. The Drude parameters obtained by applying a simple Drude model combined with the Lorentz oscillator model for the optical transmittance and reflectance spectrum were analyzed by using the carrier density dependent bare band effective mass determined by the first-order nonparabolicity approximation. The squared plasma energy multiplied by the carrier density dependent effective mass yielded fairly linear relationship with respect to the carrier concentration in wide carrier density range of 1019 − 1021 cm−3, verifying the applicability of the nonparabolicity parameter for various types of impurity doped ZnO thin films. The correlation between the optical and Hall analyses was examined by taking the ratios of optical to Hall measurements for carrier density, mobility, and resistivity by introducing a parameter, Rdl, which represents the ratio of the resistances to electron transport from the inside of the lattice and from the crystallographic defects. For both the carrier concentration and mobility, the ratios of optical to Hall measurements were shown to exhibit a monotonically decreasing function of Rdl, indicating that the parameter Rdl could be used as a yardstick in correlating the optically determined carrier density and mobility with those measured by Hall analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call