Abstract

Peripheral nerve injury induces functional reorganization of the central nervous system. The mechanisms underlying this reorganization have been widely studied. Our previous study involving multiple-site optical recording reported that a neural excitatory wave induced by somatic stimulation begins in a small area and propagates in the cortex. In the present study, to examine the possible role of this propagation wave in cortical reorganization, we analyzed the early changes in the spatio-temporal pattern of the sensory-evoked wave immediately, and 30 min, after nerve injury. The response to hypothenar stimulation, innervated by the ulnar nerve and adjoining the median nerve area, persisted after injury to either the ulnar or median nerve. Initially, we assessed changes in the response pattern at the focus. The latency increased after ulnar nerve injury, whereas no change was observed after median nerve injury. Similarly, no change was noted in the duration of the response signal with either nerve injury. Second, changes in the propagation wave pattern were analyzed. Ulnar nerve injury decreased the propagation velocity in the medial direction but the median nerve injury induced no changes. These results indicated that the propagation wave pattern is readily altered, even immediately after nerve injury, and suggest that this immediate change in the spatio-temporal pattern is one of the factors contributing to the cortical reorganization.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call