Abstract

9,9-bis (diphenylphosphorylphenyl) fluorene (FDPO) and dibenzotetrathienoacene (DBTTA), are synthesized as the neutral and anionic ligands, respectively, to prepare the ErIII coordination polymer [Er(DBTTA)3(FDPO)]n. Based on the intramolecular energy transfer, optical gains at 1.5µm are demonstrated in [Er(DBTTA)3(FDPO)]n-doped polymer waveguides under excitations of low-power light-emitting diodes (LEDs) instead of laser pumping. A ligand-sensitization scheme between organic ligands and Er3+ ions under an excitation of an ultraviolet (UV) LED is established. Relative gains of 10.5 and 8.5dBcm-1 are achieved at 1.53 and 1.55µm, respectively, on a 1-cm-long SU-8 channel waveguide with a cross-section of 2×3µm2 and a 1.5-µm-thick [Er(DBTTA)3(FDPO)]n-doped polymethylmethacrylate (PMMA) as upper cladding. The ErIII coordination polymer [Er(DBTTA)3(FDPO)]n can be conveniently integrated with various low-loss inorganic waveguides to compensate for optical losses in the C-band window. Moreover, by relying on the intramolecular energy transfer and UV LED top-pumping technology, it is easy to achieve coupling packaging of erbium-doped waveguide amplifiers (EDWAs) with pump sources in planar photonic integrated chips, effectively reducing the commercial costs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.