Abstract

Is it possible to derive accurately Total Suspended Matter concentration or its proxy, turbidity, from remote sensing data in tropical coastal lagoon waters? To investigate this question, hyperspectral remote sensing reflectance, turbidity and chlorophyll pigment concentration were measured in three coral reef lagoons. The three sites enabled us to get data over very diverse environments: oligotrophic and sediment-poor waters in the southwest lagoon of New Caledonia, eutrophic waters in the Cienfuegos Bay (Cuba), and sediment-rich waters in the Laucala Bay (Fiji). In this paper, optical algorithms for turbidity are presented per site based on 113 stations in New Caledonia, 24 stations in Cuba and 56 stations in Fiji. Empirical algorithms are tested at satellite wavebands useful to coastal applications. Global algorithms are also derived for the merged data set (193 stations). The performances of global and local regression algorithms are compared. The best one-band algorithms on all the measurements are obtained at 681 nm using either a polynomial or a power model. The best two-band algorithms are obtained with R412/R620, R443/R670 and R510/R681. Two three-band algorithms based on Rrs620.Rrs681/Rrs412 and Rrs620.Rrs681/Rrs510 also give fair regression statistics. Finally, we propose a global algorithm based on one or three bands: turbidity is first calculated from Rrs681 and then, if < 1 FTU, it is recalculated using an algorithm based on Rrs620.Rrs681/Rrs412. On our data set, this algorithm is suitable for the 0.2-25 FTU turbidity range and for the three sites sampled (mean bias: 3.6 %, rms: 35%, mean quadratic error: 1.4 FTU). This shows that defining global empirical turbidity algorithms in tropical coastal waters is at reach.

Highlights

  • Every year, 20 billion tons of sediments are brought to the oceans by the rivers (Milliman and Syvitski 1992)

  • The measurements consist of remote sensing reflectance (Rrs) spectra deduced from radiance and irradiance measurements that were performed using an Ocean Optics USB2000 radiometer, and turbidity profiles measured with a Seapoint turbidimeter connected to a SBE19 CTD probe

  • The Rrs spectra derived from Ocean Optics USB2000 are continuous (2048 channels between 350 and 1000 nm), we only considered, in this paper, the values obtained at a few selected wavelengths which correspond to the wavebands of the major sensors used in coastal oceanography such as MODIS, MERIS, TM, ETM+, SeaWiFS, OCTS

Read more

Summary

Introduction

20 billion tons of sediments are brought to the oceans by the rivers (Milliman and Syvitski 1992) Among these particles, the finest ones enrich or inhibit the coastal ecosystems, and distribute the fixed or adsorbed pollutants of metal, chemical or organic origin. Whereas the concentration in chlorophyll-a (chl-a) has been chosen as the main inversion parameter and proxy for phytoplankton pigments, there is not yet a consensus among the specialists in particulate transport to choose a common parameter. In this context, this paper compares several TSM algorithms, in term of turbidity, for three tropical coastal areas. The feasibility to propose a valid single algorithm for different tropical coastal sites is studied

Study areas and field campaigns
Instruments and Methods
Local algorithms for turbidity
Towards a global algorithm in tropical coastal waters
Two-band algorithms
Three-band algorithms
Proposal for a global algorithm with threshold
Findings
Discussion and Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.