Abstract

This paper presents an optical-aided navigation method for automatic flights where satellite navigation might be disturbed. The proposed solution follows common approaches where satellite position updates are replaced with measurements from environment sensors such as a camera, lidar or radar as required. The alternative positioning is determined by a localization and mapping (SLAM) algorithm that handles 2D feature inputs from monocular camera images as well as 3D inputs from camera images that are augmented by range measurements. The method requires neither known landmarks nor a globally flat terrain. Beside the visual SLAM algorithm, the paper describes how to generate 3D feature inputs from lidar and radar sources and how to benefit from both monocular triangulation and 3D features. Regarding state estimation, the approach decouples visual SLAM from the filter updates. This allows software and hardware separation, i.e. visual SLAM computations on powerful hardware while the main filter can be installed on real-time hardware with possible lower capabilities. The localization quality in case of satellite dropouts is tested with data sets from manned and unmanned flights with different sensors while keeping all parameters constant. The tests show the applicability of this method in flat and hilly terrain and with different path lengths from few hundred meters to many kilometers. The relative navigation achieves an accumulation error of 1–6 % of distance traveled depending on the flight scenario. In addition to the flights, the paper discusses flight profile limitations when optical navigation methods are used.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.