Abstract

Aim of this work is to describe the optical system developed, with ray-tracing simulations, to improve the collection efficiency of Multi-Anode Photo-Multipliers (MAPMTs) detectors from Hamamatsu corp., used in nuclear, cosmic-rays and neutrino physics experiments. These optical collectors have imaging and filtering capability. Such characteristics allow to improve the collection efficiency of detectors, focusing all photons inside the sensitive area, and also to improve the signal-to-noise ratio by limiting the wave lengths band to the region of interest. These filtering properties allow to avoid background photons from nearby spectral regions and they are studied to minimize the wavelength shifting in comparison with the increasing of the incident angle. The spectrum of transmissivity have been realized with high transparency in wavelength range of interest and with a sharp cutoff outside. In this work, the application on different typologies of PMT have been studied. Particularly, the collection efficiency of the 64-channel PMT was improved from 45% to 75% using our optical adapters. On an electrostatic-focusing PMT, with an efficiency of 74%, the application of our innovative solutions have enhanced this efficiency exceeding 90%, including the band pass filter and keeping the mass below 25 g. First prototypes have been fabricated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.