Abstract

Photoluminescence in fluorine-modified Sn-doped silica has been analyzed by means of synchrotron radiation in the UV and vacuum-UV, from 120 to 330 nm, looking at the optical activity of oxygen-deficient-centers ODC(II) in Sn-substituted cationic sites. The comparison between F-modified Sn-doped samples and previous data on F-free Sn-doped material evidences differences in the intensity of the 3.2 eV emission band excited at 3.7 eV, and in the thermal dependence of the intensity of this emission excited via intersystem crossing. The role of fluorine in modifying the optical activity of ODC(II) and in the SnO 2 clustering is discussed, showing that an efficient excitation transfer may be activated from SnO 2 to the Sn-variant of ODC(II).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.