Abstract

Characterizing and controlling matter driven far from equilibrium represents a major challenge for science and technology. Here, we develop a theory for the optical absorption of electronic materials driven far from equilibrium by resonant and nonresonant lasers. In it, the interaction between matter and the driving light is treated exactly through a Floquet analysis, while the effects of the probing light are captured to first order in perturbation theory. The resulting equations are reminiscent to those for equilibrium absorption but with the Floquet modes playing the role of the pristine eigenstates. The formalism is employed to characterize the optical properties of a model nanoscale semiconductor dressed by nonresonant light of intermediate intensity (nonperturbative, but nonionizing). As shown, nonresonant light can reversibly turn this transparent semiconductor into a broadband absorber and open strong absorption and stimulated emission bands at very low frequencies ($\ensuremath{\sim}\mathrm{meV}$). Further, the absorption spectra of the driven material exhibit periodic features energetically spaced by the photon energy of the driving light that reflect the periodic structure of the Floquet bands. These developments offer a platform to understand and predict the emergent optical properties of materials dressed by the electric field of light, and catalyze the design of laser-driven materials with desired optical properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.