Abstract

We numerically study plasmonic solar cells in which a square periodic array of core–shell Ag@SiO2 nanospheres (NSs) are placed on top of the indium tin oxide (ITO) layer using a 3D finite-difference time-domain (FDTD) method. We investigate the influence of various parameters such as the periodicity of the array, the Ag core diameter, the active layer thickness, the shell thickness, and the refractive index of the shell materials on the optical performance of the organic solar cells (OSC). Our results show that the optimal periodicity of the array of NSs is dependent on the size of Ag core NSs in order to maximize optical absorption in the active layer. A very thin active layer (<70 nm) and an ultrathin (<5 nm) SiO2 shell are needed in order to obtain the highest optical absorption enhancement. Strong electric field localization is observed around the plasmonic core–shell nanoparticles as a result of localized surface plasmon resonance (LSPR) excited by Ag NSs with and without silica shell. Embedding 50 nm Ag NSs with 1-nm-thick SiO2 shell thickness on top of ITO leads to an enhanced intrinsic optical absorption in a 40-nm-thick poly(3-hexylthiophene):phenyl-C61-butyric acid methyl ester (P3HT:PCBM) active layer by 24.7% relative to that without the NSs. The use of 1-nm-thick ZnO shell instead of SiO2 leads to an enhanced intrinsic absorption in a 40-nm-thick P3HT:PCBM active layer by 27%.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.