Abstract

Abstract We report results obtained from measurements of optical transmittance spectra carried out on a series of silicon thin films deposited by plasma-enhanced chemical vapour deposition (PECVD) from silane diluted with hydrogen. Hydrogen dilution of silane results in an inhomogeneous growth during which the material evolves from amorphous hydrogenated silicon (a-Si:H) to microcrystalline hydrogenated silicon (µc-Si:H). Spectral refractive indices and absorption coefficients were determined from transmittance spectra. The spectral absorption coefficients were used to determine the Tauc optical band gap energy, the B factor of the Tauc plots, E 04 (energy at which the absorption coefficient is equal to 104 cm−1), and the Urbach energy as a function of the hydrogen dilution. The results were correlated with microstructure, namely volume fractions of the amorphous and crystalline phase with voids, and with the grain size.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.