Abstract
In this proceeding, we simulate the optical properties of vertically-aligned silicon nanowire and nanohole arrays using the transfer matrix method. We find that the optical absorption in both silicon nanowire and nanohole arrays improves with increasing lattice constant up to 600nm - 700nm. We attribute the observed optical absorption enhancement effect to an increase in the field concentration inside the active silicon region and the excitation of guided resonance modes. For optimized parameters, both structures can be more absorptive than an equally-thick silicon solid film with an optimal single layer Si 3 N 4 anti-reflection coating. This conclusion holds true for both optically thin (2.33μm) and optically thick (100μm) structures. For optically thin structures, the enhancement in the optimal nanohole array exceeds the conventional light trapping limit. For optically thick structures, the enhancement in both optimal nanohole and nanowire arrays exceeds the light trapping limit. Additionally, we show that the overall absorption efficiencies for hexagonal and square lattices of nanowires are very similar.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.