Abstract

The distribution of components within colloidal suspensions is important in many complex biological and industrial fluids. A convenient method of measuring such distributions in low-volume-fraction suspensions is that of optical absorbance. Here we introduce a time-dependent validity criterion allowing extended use of optical absorbance to track colloidal distribution in high volume fraction suspensions. We define our validity criterion and show its use on a range of volume fractions from 15 to 55%, and also on larger micron sized particles, common for biological cells. Within the validity criterion, we establish the evaporative time duration in which the material’s intrinsic coefficient of extinction can be treated as constant. This method enables rapid, low-cost, time-based study of the advective flow of suspended particulates, enabling advection to be straightforwardly measured from digital imaging. The residue profile predicted using our method in two test systems is compared with conventional laser profilometry measurements of the final evaporated residue, with good agreement at most radial positions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.